HELUZ AKU 25 MK, P20

USE

Acoustic bricks with a mortar pocket in the vertical joint laid on regular mortar designed for protected load-bearing brickwork with a high degree of sound insulation.

GENERAL INFORMATION

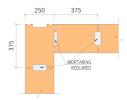
Manufacturing plant	Hevlín I.	
Compressive strength (MPa)	20	
λ _{10,dry,unit} (W/(m.K))	0,367	
Dimensions l x w x h (mm)	375 x 250 x 238	
Reaction to fire class	A1	
Bulk density (kg/m³)	990	
Average weight inf. (kg)	22,1	
Additional brick production (yes/no)	No	

MASONRY PROPERTIES ON MORTAR	M5	M10
Bricks consumption per 1 m ² (pcs)	10,7	10,7
Bricks consumption per 1 m ³ (pcs)	42,7	42,7
Mortar consumption (kg/m ²)	31,3	31,3
THERMAL PROPERTIES		

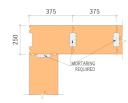
$\Lambda_{design, mas}$ (W/(m.K)) 0,42 0,42 $U_{design, mas}$ (W/(m².K)) without plasters 1,17 1,17 $U_{design, mas}$ (W/(m².K)) with plasters 1.13 1.13 $U_{dry, mas}$ (W/(m².K)) with plasters 1,07 1,07 Diffusion resistance factor µ (-) 5/10 5/10 Specific heat capacity c (kJ/(kg.K)) 1,0 1,0

FIRE RESISTANCE

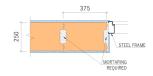
Wall plastered on both sides	REI 180	REI 180
Wall utilisation degree α	1,0	1,0

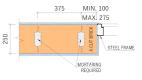

STATIC SPECIFICATIONS

Surface weight of walls with plasters (kg/m ²)	340	340
A group of masonry elements	2	2
Masonry element strength (MPa)	20	20
Compressive strenght of masonry f _k (MPa)	6,5	8
Coefficient of elasticity K _E	1000	1000
Initial shear strength of masonry $f_{_{\nu k0}}\left(\text{MPa}\right)$	0,2	0,3
SOUNDPROOFING		
Weighted sound reduction index R _w (dB)	56	56


Weighted Sound reduction mack (ub)	50	50
Measured/informative value	measured	measured
Surface weight of walls with plasters (kg/m ²)	316	316
Bulk density of mortar min. (kg/m³)	1700	1700
Bulk density of plaster min. (kg/m ³)	1600	1600
Plaster thickness (mm)	2x15	2x15

CORNER AND LINING CONNECTION


- CORNER BONDING, 1ST ROW OF BRICKWORK


- CORNER BONDING, 2ND ROW OF BRICKWORK

- BONDING AT THE DOOR REVEAL, 1ST ROW OF BRICKWORK

- BONDING AT THE DOOR REVEAL, 2ND ROW OF BRICKWORK

General information: The masonry properties are determined by the combination of the masonry element, mortar and surface treatment. It is therefore necessary to respect the principles for designing and building structures in accordance with the HELUZ documents and general regulations and technical standards. Detailed and up-to-date information, which always takes precedence over the technical specification, is available at constructionselector.heluz.com. The technical specifications contain a summary of selected product and structure properties to provide basic information for structure design. Unless otherwise stated, the individual data is based on harmonised European standards and their localisation for the Czech Republic. Product properties are given according to the harmonised EN 771-1:2011+A1:2015 standard. All of the declared product parameters are listed in the declaration of performance.

Masonry properties for mortar are given for the selected mortar types in the individual columns. The mortar consumption corresponds to the execution of the masonry in accordance with the technological regulations - HELUZ Performance Manual. Indicative labour content excludes scaffolding.

Thermal properties. The values are stated in accordance with EN 1745. $\Lambda_{design, mas}$ and $U_{design, mas}$ correspond to the design values. Coating are considered with the thickness of 2 x 15 mm with $\Lambda = 0.88$ W/m.K. The heat transfer resistance used for internal structures is $R_{si} = 0.13$ m².K/W. $U_{dry,mas}$ indicates the values for coated brickwork with the bricks and mortar in the dry state.

Fire resistance is stated for walls with rendering on both sides. The HELUZ SBC and HELUZ SB mortar values are stated in accordance with EN 1996-1-2, Annex B or based on test results. HELUZ Foam (PU) and HELUZ SIDI mortars are determined based on test results.

Statics: The group of masonry elements is specified according to EN 1996-1-1. The mechanical properties of the brickwork are based on calculations according to EN 1996-1-1 and test results. The HELUZ Foam (PU) and HELUZ SIDI mortars are determined based on test results.

Soundproofing: R_w values are determined by both wall measurement in an accredited laboratory at the specified material composition of the wall and surface weight of the masonry. The indicative values correspond to a qualified estimate based on test results of a similar brick type and material composition of the structure.